Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials
نویسندگان
چکیده
منابع مشابه
Exciton mapping at subwavelength scales in two-dimensional materials.
Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the ...
متن کاملExciton Band Structure in Two-Dimensional Materials.
Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not ...
متن کاملTwo-dimensional subwavelength plasmonic lattice solitons
F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China ”Horia Hulubei”National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, 407 Atomistilor, Magurele-Bucharest, 077125, Romania Department of Physics, University of Houston, Houston, Texas 77204-5005, USA Department of Electronic and Electrical...
متن کاملUltra-subwavelength two-dimensional plasmonic circuits.
We report electronics regime (GHz) two-dimensional (2D) plasmonic circuits, which locally and nonresonantly interface with electronics, and thus offer to electronics the benefits of their ultrasubwavelength confinement, with up to 440,000-fold mode-area reduction. By shaping the geometry of 2D plasmonic media 80 nm beneath an unpatterned metallic gate, plasmons are routed freely into various ty...
متن کاملCrystalline metamaterials for topological properties at subwavelength scales
The exciting discovery of topological condensed matter systems has lately triggered a search for their photonic analogues, motivated by the possibility of robust backscattering-immune light transport. However, topological photonic phases have so far only been observed in photonic crystals and waveguide arrays, which are inherently physically wavelength scaled, hindering their application in com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.114.107601